1m3qA
and 1xqoA
to indicate that you want to
align the A chains of the structures. When the results appear, click on
the “interactive” page.You will use the following four sequences: a leucine zipper, isomerase and rhodopsin.
>leucine zipper
MKDPAALKRARNTEAARRSRARKLQRMKQLEDKVEELLSKNYHLENEVARLKKLVGER
>isomerase
APRKFFVGGNWKMNGDKKSLGELIHTLNGAKLSADTEVVCGAPSIYLDFARQKLDAKIGVAAQNCYKVPK
GAFTGEISPAMIKDIGAAWVILGHSERRHVFGESDELIGQKVAHALAEGLGVIACIGEKLDEREAGITEK
VVFEQTKAIADNVKDWSKVVLAYEPVWAIGTGKTATPQQAQEVHEKLRGWLKTHVSDAVAQSTRIIYGGS
VTGGNCKELASQHDVDGFLVGGASLKPEFVDIINAKH
>rhodopsin
MNGTEGPNFYVPFSNKTGVVRSPFEAPQYYLAEPWQFSMLAAYMFLLIMLGFPINFLTLYVTVQHKKLRT
PLNYILLNLAVADLFMVFGGFTTTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVC
KPMSNFRFGENHAIMGVAFTWVMALACAAPPLVGWSRYIPEGMQCSCGIDYYTPHEETNNESFVIYMFVV
HFIIPLIVIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWLPYAGVAFYIFTHQG
SDFGPIFMTIPAFFAKTSAVYNPVIYIMMNKQFRNCMVTTLCCGKNPLGDDEASTTVSKTETSQVAPA
Use the “Predict protein” server on all of the three sequences (best open them in three tabs). What differences do you see? What can you learn about the structure of these proteins?
In another tab, go to the Protscale server and enter the rhodopsin sequence. Select “Kyte-Doolittle”. How does it compare to the predictions made with “Predict protein” about the transmembrane segments (section “Topology”)?
Go to the COILS server and compare the coiled-coil predictions for the sequences of the isomerase and the leucine zipper. What do you see?
Go to PDB and view the records 1YSA, 1LN6, 8TIM. How do these three structures relate to the predictions you have made?
In the following, use the following sequence.
>bHLH
MNSSSANITYASRKRRKPVQKTVKPIPAEGIKSNPSKRHRDRLNTELDRL
ASLLPFPQDVINKLDKLSVLRLSVSYLRAKSFFDVALKSSPTERNGGQDN
CRAANFREGLNLQEGEFLLQALNGFVLVVTTDALVFYASSTIQDYLGFQQ
SDVIHQSVYELIHTEDRAEFQRQLHWALNPSQCTESGQGIEEATGLPQTV
VCYNPDQIPPENSPLMERCFICRLRCLLDNSSGFLAMNFQGKLKYLHGQK
KKGKDGSILPPQLALFAIATPLQPPSILEIRTKNFIFRTKHKLDFTPIGC
DAKGRIVLGYTEAELCTRGSGYQFIHAADMLYCAESHIRMIKTGESGMIV
FRLLTKNNRWTWVQSNARLLYKNGRPDYIIVTQRPLTDEEGTEHLRKRNT
KLPFMFTTGEAVLYEATNPFPAIMDPLPLRTKNGTSGKDSATTSTLSKDS
LNPSSLLAAMMQQDESIYLYPASSTSSTAPFENNFFNESMNECRNWQDNT
APMGNDTILKHEQIDQPQDVNSFAGGHPGLFQDSKNSDLYSIMKNLGIDF
EDIRHMQNEKFFRNDFSGEVDFRDIDLTDEILTYVQDSLSKSPFIPSDYQ
QQQSLALNSSCMVQEHLHLEQQQQHHQKQVVVEPQQQLCQKMKHMQVNGM
FENWNSNQFVPFNCPQQDPQQYNVFTDLHGISQEFPYKSEMDSMPYTQNF
ISCNQPVLPQHSKCTELDYPMGSFEPSPYPTTSSLEDFVTCLQLPENQKH
GLNPQSAIITPQTCYAGAVSMYQCQPEPQHTHVGQMQYNPVLPGQQAFLN
KFQNGVLNETYPAELNNINNTQTTTHLQPLHHPSEARPFPDLTSSGFL
Go to PFAM and use the “Sequence search”, enter the sequence
above. (if it takes too long, use the identifier
AHR_HUMAN
).
Once you have a hit, analyse the result. What domains does the protein contain? What is PAS? What is HLH? What does that protein do?
AHR_HUMAN
are there in zebrafish?
(what is zebrafish anyway?) Do they all have the same
domains?Click on the HLH and PAS domains. You will get to the records describing the domains. For the HLH domain, click on “architectures” (top of the page). What do you find?
(additional) Go to chaper 10 of the Comparative Genomics book on NCBI pages and read section 3, “Problem 2” (“Problem 1” was shown by me). Use instructions from 2.2. Remember to set the E value threshold to 10!
No homework today! Yay!